REAGENT-CONTROLLED ENANTIOSELECTIVR FIOMOALDOL REACTION WITH CHIRAL l-OXYALLYLLITHIUM DERIVATIVES. ENANTIO-DIVERGENT TUNING BY ACHIRAL TITANIUM REAGENTS

Thomas Krämer and Dieter Hoppe^{*}

Institut für Organische Chemie, Universität Kiel, Olshausenstr. 40-60, D-2300 Kiel 1, BRD

Abstract. Optically active 2-alkenyl carbamates are deprotonated by n-butyllithium with retention of configuration. Lithium titanium exchange by Ti(OiPr) $_\mathrm{4}$ proceeds with retention and by ClTi(NEt₂), with inversion of configuration. The stereochemical course of addition to aldehydes is mainly determined by the chiral center of the metal allyl reagents to offer a flexible route to both enantiomers of highly substituted ketones.

Recently, we found the first example of a chiral non-racemic allyllithium compound' to exhibit considerable configurative stability at the metallated carbon atom; $t_{1/2}$ of racemization for 2b at -75 ^OC \geq 3 h. The optically active carbamate **lb** is lithiated with n-butyllithium/TMEDA with retention of configuration (Scheme 1) and undergoes metal exchange by ClTi(NEt₂)₃ with inversion. This was concluded from the opposite stereochemical course of the addition to a prochiral aldehyde^l which proceeds via a pericyclic process with 1,3-chirality transfer² to form z -anti homoaldol adduct 3b or ent-3b, respectively. The sequence constitutes a novel strategy for reagent-controlled asymmetric homoaldol addition, 3.4 although, due to the low chiral transmission and the low anti-diastereoselectivity for the lithium case, its synthetic value was rather limited at this level.

Scheme 1

We now report on useful chiral non-racemic 2-pentanone homoenolate reagents⁴ which are obtained conveniently from one enantiomer of (E) -3-penten-2-ol⁵ in both enantiomeric forms via the lithium compound 2a after metal exchange with various achiral titanium reagents. ⁶

Carbamate $1a^{7}$, 8 (84% ee) was prepared from (S)-(E)-penten-2-ol.⁹ For lithiation,⁷ a new inverse procedure was used: To **la** and n-butyllithium (1.1 eq), mixed below -70 ^OC in hexane, N,N,N',N'-tetramethyl ethylenediamine (TMEDA, 1.1 eq) is introduced slowly through a syringe and lithiation continued for 2 - 4 h at -78 to -75 °C. Addition of Ti(OiPr)₄, ClTi(NEt₂)₃ or ClTi(OiPr)₃ (1.1) eq, 0.5 h), 2-methylpropanal (1.1 eq, 0.5 h at -75 OC, **-20 OC),** followed by acidic aqueous work-up, affords a single diastereomer¹⁰ (Z-anti) 3a and ent-3a of different enantiomeric composition (Scheme 1): With Ti(OiPr)₄, 3.5 h: 59% 3a, [a]_D²⁰ = +4.7, 73% ee,¹⁰ (corr. 87% ee); with ClTi(NEt₂)₃, 4 h: 47% ent-3a, [^u]_D²⁰ = -3.5, 53% ee (corr. 63% ee); with ClTi(O<u>i</u>Pr)₃, 4 h: 28% <u>rac</u>-3a, [a]_D²⁰ = 0.0, 0% <u>ee</u>. It is evident that the metal exchange takes the opposite stereochemical Course with Ti(OiPr)₄ (retention) and ClTi(NEt₂)₃ (inversion)¹ but is not stereospecific with $\text{ClTi}(O\text{i}Pr)_{3}$. The configurative stability of the titanium intermediates is surprisingly high. Even, when the solution of $2a/Ti(OiPr)_{4}$ was kept for 0.5 h at 20 ^OC before aldehyde addition, optically active 3a (87%, 48% ee , corr. 58% ee) was isolated. A set of similar experiments was performed applying best metallation conditions (1.1 eq n-BuLi, 4 h) and using (S)- or (R)-(t-butyldimethylsilyloxy)propanal 11 4. As it is seen from Scheme 2 and Table 1, run 1 - 4, the adducts12r13 7 or **a,** ent-8 **or** ent-7 are formed via the tentative intermediates¹⁴ 5 or 6, respectively, with 82 - 90% ds. The accompanying minor diastereomer (10 - 18%) is easily separated by flash chromatography. In part, its formation is caused by the enantiomeric impurity (8%) of the starting material la (84% ee). The remaining amount is the result of a slow racemization of the metallated reagents 2, 5, or 6 and of a small positive or negative kinetic resolution. 15

Scheme 2

Table 1: Lithiation of la and addition to aldehydes (S)- and (R)-4 after metal exchange

[a] (S)-la with 84% ee (S : R = 92 : 8) Was used. [b] Combined yield after LC separation; scale 1 mmol. [c] Ratio was determined by GC and/or isolation. [d] Corrected for $(S)-1$ of 100% ee. [e] Ratio rac-1 : $(S)-4 = 1$: 1. [f] Ratio rac-1 : $(S) - 4 = 2.4$: 1. [q] Not determined. [h] Scale 25 mmol.

From these results one must conclude:

- 1. The sense and degree of 1.3-chirality transfer and of asymmetric 1.4induction depends on the achiral titanium compound used for metal exchange.
- 2. The asymmetric induction caused by the reagent 5 or 6 overrules the inherent 1,2-diastereofacial differentiation of the chiral aldehyde 4.

The combinations - (S) - 6^{14} and (S) -4 or (R) - 5^{14} and (R) -4 - constitute the "matched pairs"¹⁵ and the RS- and SR-pairs the "mismatched" ones. The experiments run 7 versus run 8 or 9 give a simple protocol for the rapid recognition¹⁶ of configuratively stable organometallics even by using the racemates. Compounds 7 or 8 represent masked γ , 6-dihydroxy ketones which rapidly are further functionalized. Epoxidation¹⁷ of 8 (t-BuOOH/V⁵⁺) gave the epoxide¹⁸ 9 which affords after treatment with acetone/ BF_2 ·OEt, and desilylation (Bu_ANF) a single furanoside^{18,19} 10.

Altogether, homoenolate reagents based on chiral allyl carbamates of type 1, in the reaction with chiral aldehydes exhibit a high degree of reagent-control. Thus, they permit the convenient stereo-rational preparation of highly functionalized enantiomerically pure ketone derivatives with few steps; up to four new continuous stereo centers are constructed with two steps optionally in each of both enantiomeric configurations starting from reagent 1.

Acknowledgement: The work was supported by Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie. Generous gifts of chemicals by BASF, Ludwigshafen, Schering AG, Bergkamen, and Wacker-Chemie, Burghausen, are gratefully acknowledged.

REFERENCES AND FOOTNOTES

- 1. D. Hoppe, T. Krämer, Angew. Chem. 98 (1986) 171; Angew. Chem. Int. Ed. Engl. 25 (1986) 160.
- 2. R. W. Hoffmann, B. Landmann, Angew. Chem. 96 (1984) 427; Angew. Chem. Int. Ed. Engl. 23 (1984) 437. - Review: R. W. Hoffmann, Chem. Scr. 25 (1985) 53.
- 3. V. J. Jephcote, A. J. Pratt, E. J. Thomas, J. Chem. Soc. Chem. Commun. 1984, 800. - H. Roder, G. Helmchen, E.-M. Peters, K. Peters, H.-G. von

Schnering, Angew. Chem. 96 (1984) 895; Angew. Chem. Int. Ed. Engl. 23 (1984) 898.

- 4. Reviews: D. Hoppe, Angew. Chem. 96 (1984) 930; Angew. Chem. Int. Ed. Engl. 23 (1984) 932; D. Hoppe in M. P. Schneider (Ed.), Enzymes as Catalysts in Organic Synthesis, p. 176, Reidel Publishing Company, Dordrecht 1986.
- 5. (S)-(E)-Penten-2-ol, 84% ee 2 , [¤] $_{\rm D}^{\rm 2O}$ = -13.5 (c = 1.7, CHCl $_{\rm 3})$, was obtained by resolution of the racemate by the phthalate method: R.H. Hill, R. Soman, S. Sawada, J. Org. Chem. 37 (1972) 3737. The (R)-enantiomer is readily available from the racemate by enzymatic ester hydrolysis; M. P. Schneider, K. Laumen, unpublished results.
- 6. Reviews: a) M. T. Reetz, Top. Curr. Chem. 106 (1982.) 1; b) B. Weidmann, D. Seebach, Angew. Chem. 95 (1983) 12; Angew. Chem. Int. Ed. Engl. 22 (1983) 31; c) D. Seebach, B. Weidmann in R. Scheffold (Ed.), Modern Synthetic Methods 1983, Salle, Frankfurt 1983; d) M. T. Reetz, Organotitanium Reagents in Organic Synthesis, Springer, Berlin 1986.
- 7. D. Hoppe, R. Hanko, A. Brönneke, F. Lichtenberg, E. van Hülsen, <u>Chem. Ber.</u> 118 (1985) 2822.
- 8. Carbamate la, 84% ee: $\left[\alpha\right]_D^{20} = +10.8$ (c = 1.9, CHCl₃). Its ee value is assumed to be identical with this of the corresponding alcohol.^{5,9}
- 9. We are obliged to Professor W. A. König, Hamburg, and to Professor V. Schurig, Tiibingen, for gas chromatographic determinations of enantiomeric purities by their methods. - W. A. König, The Practice of Enantiomer Separation by Capillar Gas Chromatography, Hiithig-Verlag, Heidelberg 1987. - V. Schurig in (J. Morrison, Ed.) Asymmetric Synthesis, Vol. 1, p. 59, Academic Press, New York 1983.
- 10. 3: 300 MHz $^{\perp}$ H NMR (δ, CDCl₃): 4.96 (dd, J_{2 3} = 10.3 Hz, J_{2 1}, = 1.1 Hz, 2-H); 2.46 (ddq, $\rm{J_{3}$,4 = 8.5 Hz, $\rm{J_{3}}$,3, = 6.8 Hz, 3-H); 3.10 (dd, $\rm{J_{4}}$,5 = 3.4 Hz, 4-H). The enantiomeric excess was determined by $^+$ H NMR using Eu(hfc) $_3$
- 11. (S)-4: S. K. Massad, L. D. Hawkins, D. C. Baker, J. Org. Chem. 48 (1983) 5180. (R)-4: $[\alpha]_D^{20} = +13.5$ (neat); was prepared analogously from (R)isobuty $\overline{1}$ lactate (yield 55%).
- 12. R_F (silica gel, ether/pentane, 1:1), 7: 0.54,8: 0.43. [a] $_D^{20}$, 7: +6.6 (c = 1.18, CH₃OH); **8**: -5.7 (c = 1.25, CH₃OH). - 300 MHz ¹H NMR (6, CDCl₃); 7: 2.53 (ddg, J₃ $= 9.9$ Hz, J₃ $_A = 4.9$ Hz, 3-H); 3.13 (dd, J₄ $= 6.1$ Hz, 4-H); 3.76 (d \dot{q} , J_{5 6} = 4.1 Hz, 5-H); 2.82 (m, OH). **8**: 2.39 (dd q , J₃ $>$ = 9.6 Hz, J_{3 d} = 8.5'Hz, 3-H); 3.28 (dd, J_{4 5} = 3.3 Hz, 4-H); 3.85 (dq, J_{5 6} = 6.2 Hz, 5-H); 2.66 (m, OH). 13 C NMR (6, CDCl3), 7/8/: 18.14/17.13/ (3- $^{\circ}$ CH₃); 19.75/16.49/ (C-6); 19.89/20.08/ (1-CH₃); 32.53/33.47/ (C-3); 70.20/69.96/ (C-5); 79.29/78.62 (C-4); 117.95/119.45/ (C-2); 145.09/145.24/ (C-l); 153.14/153.46/ (C=O).
- 13. For syn/anti assignment see: B. Landmann, R. W. Hoffmann, Chem. Ber. 120 (1987) 331.
- 14. Note, that the exchange of Li (2a) for Ti (5 or 6) causes a change of CIP priorities. Hence, an inversion of the descriptor indicates retention of the configuration.
- 15. Review: S. Masamune, W. Choy, J. S. Petersen, L. R. Sita, Angew. Chem. 97 (1985) 1; Angew. Chem. Int. Ed. Engl. 24 (1985) 1.
- 16. R. W. Hoffmann, J. Lanz, R. Metternich, G. Tarara, D. Hoppe, manuscript submitted to Angewandte Chemie.
- 17. D. Hoppe, J. Lüßmann, P. G. Jones, D. Schmidt, G. M. Sheldrick, <mark>Tetra</mark>hedron Lett. 27 (1986) 3591.
- **18. 9:** $\left[\alpha\right]_D^{2U} = +17.5$ (c = 1.4, CH₃OH). **10:** $\left[\alpha\right]_D^{2U} = -40.3$ (c = 1.8, CH₃OH); yield 11% from 8 (not optimized yet). - 300 MHz 1 H NMR (6, CDCl3): 1.56 (s, 2-CH₃); 3.85 (dd, <u>J_{4.5} = 1</u>0.1 Hz, <u>J_{4.4}</u>, = 3.0 Hz, 4-H); 2.15 (dqd, $\frac{3}{4}$ ⁵.5', = 6.7 Hz, 5-H); 4.26 (d, J_{6 5} = 4.5 Hz, 6-H); 3.97 (qd, J = 6.8 Hz, 1.12 (d, $4'-CH₃$); 1.19 (d, 5'-H).
- 19. D. Hoppe , G. Tarara, M. Wilckens, P. G. Jones, D. Schmidt, J. J. Stezowski, Angew. Chem. 99 (1987), issue 10 or 11, in press.

(Received in Germany 31 July 1987)