
Tetrahedron Letters,Vo1.28,No.43,pp 5149-5152,1987 0040-4039/87 $3.00 + .OO 
Printed in Great Britain Perqamon Journals Ltd. 

REAGENT-CONTROLLED ENANTIOSELECTIVR FIOMOALDOL REACTION WITH 
CHIRAL l-OXYALLYLLITHIUM DERIVATIVES. ENANTIO-DIVERGENT 

TUNING BY ACHIRAL TITANIUM REAGENTS 

Thomas Kramer and Dieter Hoppe* 

Institut fiir Organische Chemie, UniversitBt Kiel, 
Olshausenstr. 40-60, D-2300 Kiel 1, BRD 

Abstract. Optically active 2-alkenyl carbamates are deproto- 
nated by n-butyllithium with retention of configuration. 
Lithium titanium exchange by Ti(OiPrJ4 proceeds with reten- 
tion and by C1Ti(NEt2)3 with inversion of configuration. The 
stereochemical course of addition to aldehydes is mainly 
determined by the chiral center of the metal ally1 reagents 
to offer a flexible route to both enantiomers of highly 
substituted ketones. 

Recently, we found the first example of a chiral non-racemic allyllithium com- 

pound' to exhibit considerable configurative stability at the metallated 

carbon atom; t 1,2 of racemization for 2b at -75 OC >/ 3 h. The optically active 

carbamate lb is lithiated with n-butyllithium/TMEDA with retention of confi- 

guration (Scheme 1) and undergoes metal exchange by C1Ti(NEt2j3 with inver- 

sion. This was concluded from the opposite stereochemical course of the addi- 

tion to a prochiral aldehyde' which proceeds via a pericyclic process with 

1,3-chirality transfer2 to form Z-anti homoaldol adduct 3b or ent-3b, respec- _- 
tively. The sequence constitutes a novel strategy for reagent-controlled 

asymmetric homoaldol addition, 3p4 although, due to the low chiral transmission 

and the low anti-diastereoselectivity for the lithium case, its synthetic 

value was rather limited at this level. 

Scheme 1 

3 = iM=H. 2 M = Li.TMEDA a-2 

a R1 = CH3. k A1 = CH2CH(CH312 3 Cb = CkOjNiPr2 

We now report on useful chiral non-racemic 2-pentanone homoenolate reagents4 

which are obtained conveniently from one enantiomer of (E)-3-penten-2-01' in 

both enantiomeric forms via the lithium compound 2a after metal exchange with 

various achiral titanium reagents. 6 

Carbamate la7r8 (84% ee) was prepared from (S)-(E)-penten-2-01.' For lithia- - 
tionr7 a new inverse procedure was used: To la and n-butyllithium (1.1 eq). 

mixed below -70 OC in hexane, N,N,N',N'-tetramethyl ethylenediamine (TMEDA, -_- - 
1.1 eq) is introduced slowly through a syringe and lithiation continued for 2 

- 4 h at -78 to -75 OC. Addition of Ti(O&Pr)4, ClTi(NEt,)3 or ClTi(OiPr)3 (1.1 

eq, 0.5 h), 2-methylpropanal (1.1 eq, 0.5 h at -75 OC, -20 OC), followed by 

acidic aqueous work-up, affords a single diastereomer lo (Z-anti) 3a and ent-3a _- 
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of different enantiomeric composition (Scheme 1): 

With Ti(OiPr)4, 3.5 h: 59% 3a, [ulD 2o = +4.7, 73% ,,l" (corr. 87% E); 

with C1Ti(NEt2)3, 4 h: 47% c-3a, [u]B 2o = -3.5, 53% ee (corr. 63% ee); - - 

with C1Ti(OlPr)3, 4 h: 28% z-3a, ["II, 2o = 0.0, 0% ee -- 
It is evident that the metal exchange takes the opposite stereochemical Course 

with Ti(OiPr), (retention) and ClTi(NEt2)3 (inversion) ' but is not stereospe- 

cific with C1Ti(OiPr)3. The configurative stability of the titanium interme- 

diates is surprisingly high. Even, when the solution of 2a/Ti(OiPr)4 was kept 

for 0.5 h at 20 OC before aldehyde addition, optically active 3a (87%, 48% s, 

corr. 58% ee) was isolated. - 
A set of similar experiments was performed applying best metallation condi- 

tions (1.1 eq fl-BuLi, 4 h) and using (S)- or (R)-(r-butyldimethylsilyloxy)- _ 

propanal" 4. As it is seen from Scheme 2 and Table 1, run 1 - 4, the 

adducts12r13 7 or a, ent-8 or ent-7 are formed via the tentative interme- 

diates'l 5 or 6, respectively, with 82 - 90% ds. The accompanying minor dia- 

stereomer (10 - 18%) is easily separated by flash chromatography. In part, its 

formation is caused by the enantiomeric impurity (8%) of the starting material 

la (84% ee). The remaining amount is the result of a slow racemization Of the - 
metallated reagents 2, 5, or 6 and of a small positive or negative kinetic 

resolution. 15 

Scheme 2 

t ClTi(NEt213 
(inversion1 

8 = 

t-BuOOH@ 
1.Me2G0. BF3*OEt2 
2.Bu4NF 

8 -p . H3 = 

R' = SiMe2tBu Cb = C(=OlNiPr2 
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Table 1: Lithiation of la and addition to aldehydes (S]- and (RI-4 after metal 

exchange 

Run Reagents Products Yieldlbl(%) RatioI'] (RatiojLd] 

(~)-la[a1,(~)-4,Ti(OiPr)4 

(s)-la, (S)-4,C1Ti(NEt2)3 

(g)-la, (&I-I,Ti(OiPr)4 

(El-la, (R)-4,C1Ti(NEt2)3 

(El-la, (S)-4,C1Ti(OiPr)3 

rat-lafel ,(S)-4,C1Ti(NEt2)3 

rac-la[el ,(S)-4,Ti(OiPr)4 

~-la[f1,(~)-4,Ti(OiPr)4 

rac-la[e1,rac-4,Ti(OIPr)4 

7+ 8 

7+ 8 

ent-7 + ent-8 

ent-7 + ent-8 

7+ 8 

7+ 8 

7+ 8 

7+ 8 

rat-7 + rat-8 

61 85 : 15 (93 : 7) 

60 lo:90 (2:98) 

60 10 : 90 ( 2 : 98) 

41 82 : 18 (90 : 10) 

[?I1 53 : 47 - 

191 50 : 50 - 

75 47 : 53 - 

67 36 : 64 

80fh] 30 : 70 - 

[a] (s)-la with 84% ee (S : R = 92 : 8) Was used. [b] Combined yield after LC 
separation; scale 1 Gal. [CT Ratio was determined by GC and/or isolation. [d] 
Corrected for (5)-l of 100% ee. [e] Ratio rat-1 : (S)-4 = 1 : 1. [f] Ratio 
rat-1 : (s)-4 = 2.4 : 1. [g]<ot determined.[h] Scale 25 mmol. 

From these results one must conclude: 

1. The sense and degree of 1,3-chirality transfer and of asymmetric 1,4- 

induction depends on the achiral titanium compound used for metal exchange. 

2. The asymmetric induction caused by the reagent 5 or 6 overrules the inhe- 

rent 1,2-diastereofacial differentiation of the chiral aldehyde 4. 

The combinations - (s)-614 and (S)-4 or (E)-514 and (RI-4 - constitute the 

"matched pairs "15 and the RS- - and SR-pairs the "mismatched" ones. The experi- - 
ments run 7 versus run 8 or 9 give a simple protocol for the rapid recogni- 

tion16 of configuratively stable organometallics even by using the racemates. 

Compounds 7 or 8 represent masked Y,6-dihydroxy ketones which rapidly are 

further functionalized. Epoxidation17 of 8 (t-BuOOH/V5') gave the epoxide l8 9 - 
which affords after treatment with acetone/BF3. 

single furanosidel*rl' 10. 

0Et2 and desilylation (Bu4NF) a 

Altogether; homoenolate reagents based on chiral ally1 carbamates of type 1, 

in the reaction with chiral aldehydes exhibit a high degree of reagent-con- 

trol. Thus, they permit the convenient stereo-rational preparation of highly 

functionalized enantiomerically pure ketone derivatives with few steps; up to 

four new continuous stereo centers are constructed with two steps optionally 

in each of both enantiomeric configurations starting from reagent 1. 
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