REAGENT-CONTROLLED ENANTIOSELECTIVE HOMOALDOL REACTION WITH CHIRAL 1-OXYALLYLLITHIUM DERIVATIVES. ENANTIO-DIVERGENT TUNING BY ACHIRAL TITANIUM REAGENTS

Thomas Krämer and Dieter Hoppe*

Institut für Organische Chemie, Universität Kiel, Olshausenstr. 40-60, D-2300 Kiel 1, BRD

<u>Abstract.</u> Optically active 2-alkenyl carbamates are deprotonated by n-butyllithium with retention of configuration. Lithium titanium exchange by $Ti(OiPr)_4$ proceeds with retention and by $ClTi(NEt_2)_3$ with inversion of configuration. The stereochemical course of addition to aldehydes is mainly determined by the chiral center of the metal allyl reagents to offer a flexible route to both enantiomers of highly substituted ketones.

Recently, we found the first example of a chiral non-racemic allyllithium compound¹ to exhibit considerable configurative stability at the metallated carbon atom; $t_{1/2}$ of racemization for 2b at -75 °C \geq 3 h. The optically active carbamate **1b** is lithiated with <u>n</u>-butyllithium/TMEDA with retention of configuration (Scheme 1) and undergoes metal exchange by ClTi(NEt₂)₃ with inversion. This was concluded from the opposite stereochemical course of the addition to a prochiral aldehyde¹ which proceeds via a pericyclic process with 1,3-chirality transfer² to form <u>Z-anti</u> homoaldol adduct **3b** or <u>ent</u>-**3b**, respectively. The sequence constitutes a novel strategy for reagent-controlled asymmetric homoaldol addition,^{3,4} although, due to the low chiral transmission and the low anti-diastereoselectivity for the lithium case, its synthetic value was rather limited at this level.

Scheme 1

We now report on useful chiral non-racemic 2-pentanone homoenolate reagents⁴ which are obtained conveniently from one enantiomer of (\underline{E}) -3-penten-2-ol⁵ in both enantiomeric forms via the lithium compound **2a** after metal exchange with various achiral titanium reagents.⁶

Carbamate $la^{7,8}$ (84% <u>ee</u>) was prepared from (<u>S</u>)-(<u>E</u>)-penten-2-ol.⁹ For lithiation,⁷ a new inverse procedure was used: To la and <u>n</u>-butyllithium (l.1 eq), mixed below -70 ^oC in hexane, <u>N,N,N',N'-tetramethyl</u> ethylenediamine (TMEDA, l.1 eq) is introduced slowly through a syringe and lithiation continued for 2 - 4 h at -78 to -75 ^oC. Addition of Ti(O<u>i</u>Pr)₄, ClTi(NEt₂)₃ or ClTi(O<u>i</u>Pr)₃ (l.1 eq, 0.5 h), 2-methylpropanal (l.1 eq, 0.5 h at -75 ^oC, \rightarrow 20 ^oC), followed by acidic aqueous work-up, affords a single diastereomer¹⁰ (<u>Z-anti</u>) **3a** and <u>ent-3a</u>

of different enantiomeric composition (Scheme 1): With Ti(OiPr)₄, 3.5 h: 59% **3a**, $[\alpha]_D^{20} = +4.7$, 73% <u>ee</u>,¹⁰ (corr. 87% <u>ee</u>); with ClTi(NEt₂)₃, 4 h: 47% <u>ent-3a</u>, $[\alpha]_D^{20} = -3.5$, 53% <u>ee</u> (corr. 63% <u>ee</u>); with ClTi(OiPr)₃, 4 h: 28% <u>rac-3a</u>, $[\alpha]_D^{20} = 0.0$, 0% <u>ee</u>. It is evident that the metal exchange takes the opposite stereochemical course with $Ti(OiPr)_4$ (retention) and $ClTi(NEt_2)_3$ (inversion)¹ but is not stereospecific with ClTi(OiPr)3. The configurative stability of the titanium intermediates is surprisingly high. Even, when the solution of 2a/Ti(OiPr)4 was kept for 0.5 h at 20 ^OC before aldehyde addition, optically active **3a** (87%, 48% ee, corr. 58% ee) was isolated. A set of similar experiments was performed applying best metallation conditions (l.l eq n-BuLi, 4 h) and using (S)- or (R)-(t-butyldimethylsilyloxy)propanal¹¹ 4. As it is seen from Scheme 2 and Table 1, run 1 - 4, the adducts^{12,13} 7 or 8, ent-8 or ent-7 are formed via the tentative intermediates¹⁴ 5 or 6, respectively, with 82 - 90% ds. The accompanying minor diastereomer (10 - 18%) is easily separated by flash chromatography. In part, its formation is caused by the enantiomeric impurity (8%) of the starting material la (84% ee). The remaining amount is the result of a slow racemization of the metallated reagents 2, 5, or 6 and of a small positive or negative kinetic resolution.15

Scheme 2

Run	Reagents		Products				Yield ^[b] (%)	Ratio[C]			(Ratio)[d]			
1	$(\underline{S}) - \mathbf{la}^{[a]},$	$(\underline{s})-4, \text{Ti}(O\underline{i}Pr)_4$	7	+		8	61	85	:	15	(9	3	:	7)
2	(<u>s</u>)-la,	$(\underline{s}) - 4$, ClTi(NEt ₂) ₃	7	+		8	60	10	:	90	(2	:	98)
3	(<u>s</u>)~la,	(<u>R</u>)- 4, Ti(O <u>i</u> Pr) ₄	<u>ent</u> -7	+	<u>ent</u> -	8	60	10	:	90	(2	:	98)
4	(<u>s</u>)-la,	$(\underline{R}) - 4$, ClTi(NEt ₂) ₃	ent-7	+	<u>ent</u> -	8	41	82	:	18	(9	0	:	10)
5		$(\underline{s})-4$, ClTi $(O\underline{i}Pr)_3$	7	+		8	[g]	53	:	47			-	
6	<pre>rac-la^[e],</pre>	$(\underline{s})-4$, ClTi(NEt ₂) ₃	7	+		8	[g]	50	:	50			-	
7		(<u>S</u>)-4,Ti(OiPr) ₄	7	+		8	75	47	:	53			-	
8	<pre>rac-la[f],</pre>	$(\underline{S})-4, Ti(OiPr)_4$	7	+		8	67	36	:	64			-	
9	rac-la ^[e] ,	rac-4, Ti(OiPr) ₄	<u>rac</u> -7	+	<u>rac</u> -	8	80[h]	30	:	70			-	

Table 1: Lithiation of la and addition to aldehydes (\underline{S}) - and (\underline{R}) - 4 after metal exchange

[a] (S)-la with 84% ee (S : R = 92 : 8) Was used. [b] Combined yield after LC separation; scale 1 mmol. [c] Ratio was determined by GC and/or isolation. [d] Corrected for (S)-1 of 100% ee. [e] Ratio rac-1 : (S)-4 = 1 : 1. [f] Ratio rac-1 : (S)-4 = 2.4 : 1. [g] Not determined. [h] Scale 25 mmol.

From these results one must conclude:

- 1. The sense and degree of 1,3-chirality transfer and of asymmetric 1,4induction depends on the achiral titanium compound used for metal exchange.
- 2. The asymmetric induction caused by the reagent 5 or 6 overrules the inherent 1,2-diastereofacial differentiation of the chiral aldehyde 4.

The combinations - $(\underline{S})-6^{14}$ and $(\underline{S})-4$ or $(\underline{R})-5^{14}$ and $(\underline{R})-4$ - constitute the "matched pairs"¹⁵ and the <u>RS</u>- and <u>SR</u>-pairs the "mismatched" ones. The experiments run 7 versus run 8 or 9 give a simple protocol for the rapid recognition¹⁶ of configuratively stable organometallics even by using the racemates. Compounds 7 or 8 represent masked γ , δ -dihydroxy ketones which rapidly are further functionalized. Epoxidation¹⁷ of 8 (t-BuOOH/V⁵⁺) gave the epoxide¹⁸ 9 which affords after treatment with acetone/BF₃.OEt₂ and desilylation (Bu₄NF) a single furanoside^{18,19} 10.

Altogether, homoenolate reagents based on chiral allyl carbamates of type 1, in the reaction with chiral aldehydes exhibit a high degree of reagent-control. Thus, they permit the convenient stereo-rational preparation of highly functionalized enantiomerically pure ketone derivatives with few steps; up to four new continuous stereo centers are constructed with two steps optionally in each of both enantiomeric configurations starting from reagent 1.

Acknowledgement: The work was supported by Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie. Generous gifts of chemicals by BASF, Ludwigshafen, Schering AG, Bergkamen, and Wacker-Chemie, Burghausen, are gratefully acknowledged.

REFERENCES AND FOOTNOTES

- 1. D. Hoppe, T. Krämer, Angew. Chem. 98 (1986) 171; Angew. Chem. Int. Ed. Engl. 25 (1986) 160.
- R. W. Hoffmann, B. Landmann, Angew. Chem. 96 (1984) 427; Angew. Chem. Int. Ed. Engl. 23 (1984) 437.- Review: R. W. Hoffmann, Chem. Scr. 25 (1985) 53.
- 3. V. J. Jephcote, A. J. Pratt, E. J. Thomas, J. Chem. Soc. Chem. Commun. 1984, 800. - H. Roder, G. Helmchen, E.-M. Peters, K. Peters, H.-G. von

Schnering, Angew. Chem. 96 (1984) 895; Angew. Chem. Int. Ed. Engl. 23 (1984) 898.

- 4. Reviews: D. Hoppe, Angew. Chem. 96 (1984) 930; Angew. Chem. Int. Ed. Engl. 23 (1984) 932; D. Hoppe in M. P. Schneider (Ed.), Enzymes as Catalysts in Organic Synthesis, p. 176, Reidel Publishing Company, Dordrecht 1986.
- 5. (S) (E) -Penten-2-ol, 84% ee⁹, $[\alpha]_D^{20} = -13.5$ (c = 1.7, CHCl₃), was obtained by resolution of the racemate by the phthalate method: R.H. Hill, R. Soman, S. Sawada, J. Org. Chem. 37 (1972) 3737. The (R)-enantiomer is readily available from the racemate by enzymatic ester hydrolysis; M. P. Schneider, K. Laumen, unpublished results.
- 6. Reviews: a) M. T. Reetz, <u>Top. Curr. Chem.</u> **106** (1982) 1; b) B. Weidmann, D. Seebach, Angew. Chem. 95 (1983) 12; Angew. Chem. Int. Ed. Engl. 22 (1983) 31; c) D. Seebach, B. Weidmann in R. Scheffold (Ed.), Modern Synthetic Methods 1983, Salle, Frankfurt 1983; d) M. T. Reetz, Organotitanium Reagents in Organic Synthesis, Springer, Berlin 1986.
- 7. D. Hoppe, R. Hanko, A. Brönneke, F. Lichtenberg, E. van Hülsen, Chem. Ber. **118** (1985) 2822.
- 8. Carbamate la, 84% ee: $[\alpha]_{D}^{20} = +10.8$ (c = 1.9, CHCl₃). Its ee value is assumed to be identical with this of the corresponding alcohol.5,9
- 9. We are obliged to Professor W. A. König, Hamburg, and to Professor V. Schurig, Tübingen, for gas chromatographic determinations of enantiomeric purities by their methods. - W. A. König, The Practice of Enantiomer Separation by Capillar Gas Chromatography, Hüthig-Verlag, Heidelberg 1987. - V. Schurig in (J. Morrison, Ed.) Asymmetric Synthesis, Vol. 1, p. 59, Academic Press, New York 1983.
- 10. 3: 300 MHz ¹H NMR (δ , CDCl₃): 4.96 (dd, $\underline{J}_{2,3} = 10.3$ Hz, $\underline{J}_{2,1}$ = 1.1 Hz, 2-H); 2.46 (ddg, $\underline{J}_{3,4} = 8.5$ Hz, $\underline{J}_{3,3}$ = 6.8 Hz, 3-H); 3.10 (dd, $\underline{J}_{4,5} = 3.4$ Hz, 4-H). The enantiomeric excess was determined by ¹H NMR using Eu(hfc)₃.
- 11. (S)-4: S. K. Massad, L. D. Hawkins, D. C. Baker, J. Org. Chem. 48 (1983) 5180. (R)-4: $[\alpha]_D^{20} = +13.5$ (neat); was prepared analogously from (R)isobutyl lactate (yield 55%).
- 12. R_F (silica gel, ether/pentane, 1:1), 7: 0.54,8: 0.43. $[\alpha]_D^{20}$, 7: +6.6 (c = 1.18, CH₃OH); 8: -5.7 (c = 1.25, CH₃OH). 300 MHz ¹H NMR (δ , CDCl₃); 7: 2.53 (ddq, $J_{3,2} = 9.9$ Hz, $J_{3,4} = 4.9$ Hz, 3-H); 3.13 (dd, $J_{4,5} = 6.1$ Hz, 4-H); 3.76 (dq, $J_{5,6} = 4.1$ Hz, 5-H); 2.82 (m, OH). 8: 2.39 (ddq, $J_{3,2} = 9.6$ Hz, $J_{3,4} = 8.5$ Hz, 3-H); 3.28 (dd, $J_{4,5} = 3.3$ Hz, 4-H); 3.85 (dq, $J_{5,6} = 6.2$ Hz, 5-H); 2.66 (m, OH). ¹³C NMR (δ , CDCl₃), **7/8**/: 18.14/17.13/ (3-4) CH₃); 19.75/16.49/ (C-6); 19.89/20.08/ (1-CH₃); 32.53/33.47/ (C-3); 70.20/69.96/ (C-5); 79.29/78.62 (C-4); 117.95/119.45/ (C-2); 145.09/145.24/ (C-1); 153.14/153.46/ (C=O).
- 13. For syn/anti assignment see: B. Landmann, R. W. Hoffmann, Chem. Ber. 120 (1987) 331.
- 14. Note, that the exchange of Li (2a) for Ti (5 or 6) causes a change of CIP priorities. Hence, an inversion of the descriptor indicates retention of the configuration.
- 15. Review: S. Masamune, W. Choy, J. S. Petersen, L. R. Sita, Angew. Chem. 97 (1985) 1; Angew. Chem. Int. Ed. Engl. 24 (1985) 1.
- 16. R. W. Hoffmann, J. Lanz, R. Metternich, G. Tarara, D. Hoppe, manuscript submitted to Angewandte Chemie.
- 17. D. Hoppe, J. Lüßmann, P. G. Jones, D. Schmidt, G. M. Sheldrick, Tetrahedron Lett. 27 (1986) 3591.
- 18. $\overline{9: [\alpha]_D^{20}} = + 17.5$ (c = 1.4, CH₃OH). 10: $[\alpha]_D^{20} = -40.3$ (c = 1.8, CH₃OH); yield Ĩl% from 8 (not optimized yet). - 300 MHz ¹H NMR (δ , CDCl₃): 1.56 (s, 2-CH₃); 3.85 (dd, $J_{4,5} = 10.1$ Hz, $J_{4,4} = 3.0$ Hz, 4-H); 2.15 (dqd, $J_{5,5'} = 6.7$ Hz, 5-H); 4.26 (d, $J_{6,5} = 4.5$ Hz, 6-H); 3.97 (qd, J = 6.8 Hz, 4'-H); 1.12 (d, 4'-CH₃); 1.19 (d, 5'-H). 19. D. Hoppe, G. Tarara, M. Wilckens, P. G. Jones, D. Schmidt, J. J. Stezows-
- ki, Angew. Chem. 99 (1987), issue 10 or 11, in press.

(Received in Germany 31 July 1987)